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Colonies of Escherichia coli or Salmonella typhimurium form geometrically complex patterns when exposed to,
or feeding on, intermediates of the tricarboxylic acid (TCA) cycle. In response to the TCA cycle inter-
mediate, the bacteria secrete aspartate, a potent chemo-attractant. As a result, the cells form high-
density aggregates arranged in striking regular patterns. The simplest are temporary spots formed in a
liquid medium by both E. coli and S. typhimurium. In semi-solid medium S. typhimurium forms concentric
rings arising from a low-density bacterial lawn, which are either continuous or spotted, whereas E. coli
forms complex patterns arising from a dense swarm ring, including interdigitated spots (also called
sun£ower spirals), radial spots, radial stripes and chevrons. We present a mathematical model that
captures all three of the pattern-forming processes experimentally observed in both E. coli and S. typhi-
murium, using a minimum of assumptions.
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1. INTRODUCTION

Colonies of Escherichia coli or Salmonella typhimurium form
geometrically complex patterns when exposed to, or
feeding on, intermediates of the tricarboxylic acid (TCA)
cycle (Budrene & Berg 1991, 1995). In response to the
TCA cycle intermediate, the bacteria secrete aspartate,
which is a potent chemo-attractant. Subsequently, the
cells form high-density aggregates arranged in a regular
pattern, by means of at least three very di¡erent pattern-
forming processes, each of which will be described below.

Although each pattern-forming process is unique, the
essential elements of bacteria, aspartate (chemo-attrac-
tant) and TCA cycle intermediate (pattern stimulant)
remain the same. Among the pattern stimulants, succi-
nate and fumarate produced the strongest e¡ect (Budrene
& Berg 1991). In the following, we refer to the TCA cycle
intermediate as succinate, although fumarate is under-
stood to be equivalent for our purposes.
In bacterial chemotaxis, exactly how the complex

arrangements form from interactions between individuals
is di¤cult to determine. In cases such as this, when bio-
logical intuition seems unable to provide an adequate
explanation, mathematical modelling can play an
especially helpful role. Since the pioneering study by
Keller & Segel (1971a,b), a considerable amount of
modelling e¡ort has been expended on these patterns.
Ben-Jacob et al. (1995) and Tsimring et al. (1995) had
thresholding behaviour in aspartate production and a cell-
secreted waste ¢eld in their model. They obtained spatial
patterns resembling some of the experimentally observed
E. coli patterns. Bruno (1992) assumed constant chemo-
attractant production and obtained interesting patterns.
Brenner et al. (1998) performed a one-dimensional analysis

of the swarm ring mechanism in the formation of E. coli
patterns in semi-solid medium. They studied the relative
importance of the terms in their model from the point of
view of pattern formation. Their conclusions are consis-
tent with our two-dimensional results. Woodward et al.
(1995), modelling the S. typhimurium patterns in semi-
solid medium, assumed degradation rather than uptake
of aspartate. It has subsequently become clear (Budrene
& Berg 1995) that the cells do consume aspartate and
that the chemical is very stable and does not degrade on
its own.

All of these models contain more or less reasonable
assumptions, and produce interesting patterns, yet none
has been studied with respect to all three pattern-forming
processes, when any realistic model of the system must
reproduce them all. In this paper we present a mathema-
tical model that captures all three observed pattern-
forming processes based on a minimum of assumptions.
Webrie£ymention here some relatedmodelsbyKawasaki

et al. (1997). In their paper, they model non-chemotactic
bacterial patterns formed by the bacteria Bacillus subtilis.
Their model is a reaction^di¡usion system with density-
dependent di¡usion instead of chemotaxis (negative
density-dependent di¡usion) as we have. The dendritic
patterns produced by Bacillus and by Kawasaki et al. are
very di¡erent from ours. Other interesting patterns in
vitro, in fungi, have been modelled by Davidson et al.
(1996).

2. MATHEMATICAL MODEL

Combining the key biological processes into a mathe-
matical model, we write a system of three conservation
equations of the form
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where n denotes bacterial cell density, c the aspartate
concentration and s the succinate concentration.

Experimental justi¢cation of various functional forms
is available for many of the boxed terms. Below, we will
discuss ¢rst the di¡usion and random migration terms,
then the chemotaxis term, and ¢nally the four reaction
terms in increasing order of complexity.

The di¡usion terms are straightforward, as aspartate
and succinate undergo classical Fickian di¡usion. The
bacteria do not strictly di¡use, but careful study of their
motion indicates that they do perform a random walk. At
the population level, then, the bacteria can also be
thought of as substances di¡using in a Fickian manner
(Berg 1983; Berg & Turner 1990); di¡usion coe¤cients
have been measured (Phillips et al. 1994).

The chemotactic £ux of E. coli in the presence of ¢xed
aspartate gradients was measured by Dahlquist & Lovely
(1972) and a mathematical expression was derived from
these experiments by Lapidus & Schiller (1976) (see Ford
& Lau¡enburger (1991) for a review). The two bacteria
E. coli and S. typhimurium are very closely related, and so it
is safe to assume that their chemotactic response to aspar-
tate is very similar. Thus we have the chemotaxis £ux
term

k1n
(k2 � c)2

rc, (2)

where k1 and k2 are known (table 1). The implication of
the density-dependent term is that the chemotactic £ux
decreases as the background level of chemo-attractant
increases.

Of the reaction terms, the simplest are the uptake of
aspartate and uptake of succinate terms. We assume that
uptake of aspartate occurs simply at a rate proportional
to the aspartate concentration. Thus we have u(c) � k7c
for consumption of aspartate, where k7 is the rate
constant. Consumption of succinate is proportional to
population growth rate (see below), with proportionality
constant k8, because the cells are converting nutrient to
cells.

The terms for proliferation (growth and death) of cells
and production of aspartate are less easily selected.We can
show that the exact functional form of each of these terms
is not critical. Budrene & Berg (1995) observe that the cell
density achieved in a Petri dish after some unspeci¢ed
amount of time depends on the amount of nutrient
initially available. For these experiments, the pattern

stimulant, succinate, is also the main nutrient. So we
know that growth rate per cell increases with initial
concentration of succinate. At any given concentration of
succinate, the growth rate per cell is constant (Budrene &
Berg 1995). This gives nb(s) for the population growth
rate, where b(s) is a monotonically increasing function of
s that levels o¡ as succinate concentration increases. For
the simulations presented in this paper, we used
b(s) � k3k4s2=(k9 � s2).

The death rate d(n,s) per cell, corresponding to cells
becoming non-motile, is unknown. Some plausible
assumptions are a constant death rate d(n,s) � ÿk3, and/
or a death rate that increases with high cell densities,
d(n,s) � ÿk3n, where k3 is constant. For the simulations
presented in this paper, we used the latter.

For the production of aspartate per cell, p(n,s), we
know that the presence of a TCA cycle intermediate is
necessary, so p(n,0) � 0. We also know from experiment
(Budrene & Berg 1995) that the amount of aspartate
produced increases with the amount of succinate present.
Thus aspartate production is an increasing function of
succinate concentration. For the model to yield pattern,
analysis (Tyson et al. 1998a,b) shows that the production
of aspartate must increase su¤ciently quickly at low
succinate concentrations. The behaviour of the function at
larger concentrations of succinate is not critical. A
number of functions were tested, and for the results
presented in this paper we used p(n,s) � k5sn=(k6 � n2).
This is a saturating function of cell density indicating
that, as cell density increases, production of chemo-
attractant decreases. It would be more usual to have
Michaelis^Menten kinetics, with the cell density depen-
dence being 1=(k6 � n). Here we ¢nd we need the order
n2 dependence for su¤ciently rapid increase in production
of aspartate at low succinate concentrations.

Collecting all of the information just presented, we
have

uc(c) � k7c

us(s) � k8
k4s2

k9 � s2

p(n,s) � k5s
n

k6 � n2

b(s) � k3
k4s2

k9 � s2

d(n,s) � k3n

(3)
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Table 1. Dimensional parameter values obtained from the
literature for use in the E. coli and S. typhimurium model
equations (4)

parameter value source

k1 3.9�10ÿ9 M cm2 sÿ1 Dahlquist et al. 1972
k2 5�10ÿ6 M Dahlquist et al. 1972
Dn 2^4�10ÿ6 cm2 sÿ1 Berg & Turner 1990;

Berg 1983, p. 93
Dc 8.9�10ÿ6 cm2 sÿ1 Berg 1983
Ds � 9�10ÿ6 cm2 sÿ1 Berg 1983
n0 108 cells mlÿ1 Budrene & Berg 1991
s0 1^3�10ÿ3 M Budrene & Berg 1995



for uptake of aspartate, uptake of succinate, aspartate
production, cell birth and cell death. Because each of
these functions is behaviour per cell, they each must be
multiplied by n in our equations.
We thus arrive at the mathematical representation of

the model system (1):

@n
@t
� Dnr2nÿ r k1n

(k2 � c)2
rc

� �
� k3n

k4s2

k9 � s2
ÿ n

� �
@c
@t
� Dcr2c� k5s

n2

k6 � n2
ÿ k7nc

@s
@t
� Dsr2sÿ k8n

k4s2

k9 � s2
.

�4�

Known parameter values are listed in table 1. For numer-
ical simulations, we used a fractional step method with
`Strang splitting' as discussed in Tyson et al. (1998b). The
simulations were done on non-dimensionalized equations
as detailed inTyson et al. (1999), with zero-£ux boundary
conditions. The initial conditions for the liquid-medium
simulations were n(x, y) � n0, c(x, y) � 0 and s(x, y) � s0.
For the semi-solid S. typhimurium and E. coli simulations
the initial conditions were

n(r) � n0 f (r) for r4 R

� 0 for r > Rc(x,y) � 0

s(x, y) � s0,

(5)

where r � p(x2 � y2) and f (r) is a radially symmetric
bell-shaped function with local support centred at the
origin. The outer limit of the cell inoculum, R, was
chosen to be small compared with the size of the simula-
tion domain. The grid size used varied from 150�150
points to 300�300 points. Actual values for each ¢gure
are given in the ¢gure captions.

3. PATTERNS FORMED IN LIQUID MEDIUM

The liquid medium patterns were brie£y described by
Budrene & Berg (1991). Initially, succinate is uniformly
added to a thin, well-stirred layer of liquid medium
containing bacteria. Aggregates form randomly over the
entire surface after a short interval. The aggregates are
separated by regions of near-zero cell density, and
coalesce with other aggregates to form fewer and larger
ones. The pattern eventually disappears, after which it
cannot be induced to re-form.
The patterns arise and disappear in less than a genera-

tion time, so proliferation of cells is not involved and we set
k3 to zero. The liquid medium contains su¤cient nutrients
for the bacteria so that they do not consume signi¢cant
quantities of succinate or aspartate, so we set k7 � k8 � 0
and assume that s is spatially uniform. The equations for
the liquid experiments are therefore a special case of the
general equations (4).The simpli¢ed system is

@n
@t
� Dnr2nÿ r k1n

(k2 � c)2
rc

� �
;

@c
@t
� Dcr2c� k5s

n2

k6 � n2
.

Because the chemo-attractant is produced and not
consumed, the concentration of aspartate in the Petri dish
increases with time. This leads to saturation of the
chemotaxis term, until eventually di¡usion is the
dominant spatial process. Thus we can immediately see
that any pattern which initially forms will eventually
disappear, as is observed experimentally and can be
shown analytically (Tyson et al. 1998a).
Numerical results are shown in ¢gure 1. Aggregates

form in response to the stimulant, initially as faint
threads and then as distinct spots. The pattern wave-
length (distance between spots) increasing as aggregates
coalesce and their numbers decrease. On the bottom
right-hand corner of ¢gure 1b two spots can be seen
coalescing. After a su¤ciently long time (not shown)
(Tyson et al. 1998a), the pattern disappears.

4. S. TYPHIMURIUM PATTERNS IN SEMI-SOLID

MEDIUM

S. typhimurium forms relatively simple patterns in semi-
solid medium (Woodward et al. 1995). Initially succinate
is uniformly distributed throughout a thin layer of semi-
solid medium (0.24% water agar), and an inoculum of
cells is added to the centre.
After addition of cells, a low-density bacterial lawn

spreads radially from the initial inoculum. Some time
later, a high-density ring of bacteria appears at a radial
distance less than the radius of the lawn. After another
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Figure 1. Liquid medium model with succinate added
uniformly, simulation results. White corresponds to high cell
density, black to low density. Parameter cell values:
Dn=Dc � 0:25, k1=Dck2 � 90, k6=n20 � 100.



time interval, when the lawn has expanded further, a
second high density bacterial ring appears at some radius
larger than that of the ¢rst ring. The rings, once formed,
are stationary. This process continues until the Petri dish
is full of rings.

The rings may remain continuous, or may break up to
become rings of spots. The high-density aggregates in
one ring bear no obvious positional relation to the
aggregates in the two neighbouring rings, and spots are
closer within a ring than between rings. The patterns
form slowly in these experiments, over a period of
2^3 days. The generation time is 2 h, and so proliferation
is important. Consumption of aspartate and succinate
also occur. The equations for these experiments are thus
the full system (4).

Numerical simulations are shown in ¢gure 2a,b. Quali-
tatively, the simulation results correspond well to the
experimental results. The numerical pattern is preceded
by a bacterial lawn of low cell density. Each ring forms at
a consistent radial distance from the previous one, and

then remains stationary. The spotted rings form ¢rst as
continuous rings, which subsequently break up into spots.
The distance between spots in a ring is a¡ected by the
ratio k6=n20. As this ratio increases, the distance between
spots within a ring decreases (Tyson et al. 1999) so we
conclude that the chemo-attractant production term is
strongly dependent on n at low bacterial densities.
Some quantitative comparison between the model and

experiment is possible. Taking the parameter values from
¢gure 2, we ¢nd that four rings form in a distance
x � 1:4 cm. This is close to the experimentally observed
value of x � 1cm (Woodward et al. 1995). Owing to the
fact that a number of model parameters are unknown, we
do not know what the dimensional time is. The times
taken for the ¢rst four rings to form experimentally and
numerically are not comparable, because the density and
distribution of cells at the inoculum a¡ect the time for
formation of the ¢rst ring.

5. E. COLI PATTERNS IN SEMI-SOLID MEDIUM

The most spectacular patterns are exhibited by E. coli
in a semi-solid medium. The experimental situation is
exactly the same as for the S. typhimurium patterns, but the
process whereby pattern forms is very di¡erent. Initially,
instead of a thin bacterial lawn, a swarm ring (high-
density ring of vigorously motile bacteria) forms and
expands outwards from the initial inoculum. The
bacterial density in the swarm ring increases until some
point at which the ring becomes unstable, and some
percentage of the bacteria are left behind as aggregates.
These aggregates remain bright (full of vigorously motile
bacteria) for a short period of time, but then dissolve as
the bacteria rejoin the swarm ring. Left behind in the
aggregate's original location is a clump of bacteria,
which, for some reason as yet unknown, are non-motile.
These non-motile bacteria remain as markers of the
pattern.

Radial and tangential distances between spots are
comparable, and in the ¢nal pattern there exists a de¢nite
positional relation between radially and tangentially
neighbouring aggregates. This relation appears to be the
result of existing aggregates inducing the formation of
subsequent ones (Budrene & Berg 1995). The speed of the
swarm ring and the time at which the dissolution of aggre-
gates occurs are likely to be key elements in the formation
of any one pattern. If the dissolution happens quickly, the
aggregates appear to be pulled along by the swarm ring,
and the non-motile bacteria are left behind as a radial
streak. If the dissolution happens less quickly, the cells
from the dissolved aggregate rejoin the swarm ring and
induce the formation of aggregates at the rejoining loca-
tions.This results in a pattern of radial spots. If the dissolu-
tion happens even more slowly, the swarm ring becomes
unstable before the bacteria from the aggregates have time
to rejoin the ring. The ring then tends to form aggregates
in between the locations where aggregates already exist.
This results in an interdigitated-spots type of pattern,
approximating hexagonal symmetry.

As in the S. typhimurium experiments, proliferation of
cells and consumption of aspartate and succinate are
important, so we model these experiments with the full
model, equations (4).
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Figure 2. Semi-solid medium model, simulation results,
S. typhimurium patterns: (a) concentric rings (transition to
spotted rings pattern) and (b) concentric spotted rings. White
indicates high cell density, black the opposite. Parameter
values: (a) Dn=Dc � 0:25, Ds=Dc � 0:89, k1=k2Dc � 40,
k3=k7 � 1:0, k4=n0 � 70, k5

����
k9
p

=k7k2n0 � 10, k8=k7
����
k9
p

� 5� 10ÿ3, k6=n20 � 100. (b) Dn=Dc � 0:26, Ds=Dc � 0:89,
k1=k2Dc � 89, k3=k7 � 1:0, k4=n0 � 7, k5

����
k9
p

=k7k2n0 � 8,
k8=k7

����
k9
p � 1� 10ÿ3, k6=n20 � 100.



Simulation and analysis (R. Tyson, S. Lubkin and J. D.
Murray, unpublished data) show that the model yields a
swarm ring, which leaves rings of spots behind. Following
the experimental paradigm, we take the same parameters
just studied and increase the amount of nutrient present.
Numerical results are again consistent with experiment
and show that increased nutrient results in more spots
per unit length following the swarm ring. The change
also increases the cell density in the swarm ring and in
the spots themselves, and the spots remain visible for a
greater length of time.

We have obtained an interdigitated-spots pattern and a
radial-spots pattern (¢gure 3) which are qualitatively
similar to the experimental ones. The regular pattern
does not begin until some critical radius. The pattern
observed experimentally under phase-contrast micro-
scopy is devoid of cells toward the centre, whereas the
simulation contains a random arrangement of a few
aggregates.

Our non-dimensionalization (R. Tyson, S. Lubkin and
J. D. Murray, unpublished data) allows us to make a
quantitative comparison between the model and experi-
ment.We have
t�

(x�)2
� Dc

t
x2
,

where t� and x� are the dimensionless time and distance
units, respectively. Taking x� as the distance between
neighbouring rings, and t� as the time taken to form a
neighbouring ring, we have found this ratio to range from
0.1 to 0.04 (its value in ¢gure 3) in our simulations. These
results compare reasonably well with the experimental
value, which is approximately 0.2.

6. CONCLUSIONS

There are many encouraging similarities between the
results of the model and those of the experiment.We have
found that the model can exhibit all three pattern
forming processes observed in experiment. These are (i)
the temporary formation of aggregates in liquid medium,
(ii) the formation of a thin bacterial lawn and subse-
quently stationary rings of S. typhimurium in semi-solid
medium, and (iii) a swarm ring spawning regularly
spaced aggregates of E. coli in semi-solid medium. In
addition, we also ¢nd that the patterns produced by each
process include many similarities to the patterns observed
experimentally, including the radial spots and interdigi-
tated spots of the E. coli repertoire.

With a minimal set of assumptions, we have built a
model that captures many of the essential characteristics
of the experiments. In future, as our understanding of
the experiments increases, an improved model should
eventually encompass all of their salient features. Two
obvious candidates for further investigation are the
nutrient concentration as bifurcation parameter for the
semi-solid medium patterns, and the two remaining
E. coli geometries, radial stripes and chevrons.

With the present model we have already seen some
radial travel by the swarm-ring aggregates. This phenom-
enon experimentally gives rise to the radial streaks in the
radial stripes and chevron patterns. In our simulations,
we ¢nd this behaviour at higher nutrient concentrations
and higher swarm-ring speeds than we have been consid-
ering thus far, so their study will require a larger grid
and considerably more computation.
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